Artificial Neural network for Data mining –A study
نویسندگان
چکیده
Data mining is defined as the extraction of hidden predictive information from large databases. It finds its application in real world situations such as business, science, technology, and government .A data mining algorithm constitutes a model, a preference criterion, and a search algorithm. The more common model functions in data mining include classification, clustering, rule generation and knowledge discovery. There are many technologies available to data mining practitioners, including Artificial Neural Networks, Regression, and Decision Trees. Keywords— Data mining, Neural network, Neural network training.
منابع مشابه
Comparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملArtificial Intelligence for prediction of porosity from Seismic Attributes: Case study in the Persian Gulf
Porosity is one of the key parameters associated with oil reservoirs. Determination of this petrophysical parameter is an essential step in reservoir characterization. Among different linear and nonlinear prediction tools such as multi-regression and polynomial curve fitting, artificial neural network has gained the attention of researchers over the past years. In the present study, two-dimensi...
متن کاملA comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...
متن کاملApplication of artificial neural network and genetic algorithm to modelling the groundwater inflow to an advancing open pit mine
In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...
متن کاملEstimation of Punching Shear Capacity of Concrete Slabs Using Data Mining Techniques
Punching shear capacity is a key factor for governing the collapsed form of slabs. This fragile failure that occurs at the slab-column connection is called punching shear failure and has been of concern for the engineers. The most common practice in evaluating the punching strength of the concrete slabs is to use the empirical expressions available in different building design codes. The estima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013